
Apertium: A rule-based machine translation
platform

Francis M. Tyers

HSL-fakultehta
UiT Norgga árktalaš universitehta

9018 Romsa (Norway)

28th September 2014

1 / 41

Outline
Introduction

Design
Development
Status

Teaching
Courses
Google Summer of Code
Google Code-in

Research
New language pairs
Applying unsupervised methods
Hybrid systems

Future work and challenges
Challenges
Plans
Collaboration

1 / 41

History

▶ 2004 — Spain gets a new government which launches a call
for proposals to build machine translation systems for the
languages of Spain

▶ The Universitat d’Alacant (UA), in consortium with EHU,
UPC, UVigo, Eleka, Elhuyar (Basque Country) and Imaxin
(Galicia) get funded to develop two MT systems:

▶ Apertium: Spanish–Catalan, Spanish–Galician
▶ Matxin: Spanish→Basque

▶ Apertium was not built from scratch, but was rather a rewrite
of two existing closed-source systems which had been built by
UA

2 / 41

Focus

▶ Marginalised: Languages which are on the periphery either
societally or technologically (from Breton to Bengali).

▶ Lesser-resourced: Languages for which few free/open-source
language resources exist.

▶ Closely-related: Languages which are suited to
shallow-transfer machine translation.

3 / 41

Translation philosophy

▶ Build on word-for-word translation
▶ Avoid complex linguistic formalisms

▶ We like saying “only secondary-school linguistics required”1

▶ Intermediate representation based on morphological
information

▶ Transformer-style systems
▶ Analyse the source language (SL), then
▶ Apply rules to ‘transform’ the SL to the TL

1Otte, P. and Tyers, F. (2011) “Rapid rule-based machine translation
between Dutch and Afrikaans”. Proceedings of the 16th Annual Conference of
the European Association of Machine Translation

4 / 41

Pipeline

lexical

transfer

morph.

analyser

morph.

disambig.

morph.

generator

post-

generator

SL

text

TL

text

deformatter

reformatter

structural

transfer

lexical

selection

5 / 41

Step-by-step
lexical

transfer

morph.

analyser

morph.

disambig.

morph.

generator

post-

generator

SL

text

TL

text

deformatter

reformatter

structural

transfer

lexical

selection

Morphological analysis

$ echo "Tiilitalojen keskellä hän kirjoitti minulle nimensä kiinalaisin kirjaimin." | apertium -d
. fin-eng-morph
^Tiilitalojen/tiilitalo<n><pl><gen>$ ^keskellä/keskellä<adv>/keskellä<post>$
^hän/hän<prn><pers><sg><nom>$ ^kirjoitti/kirjoittaa<vblex><actv><past><p3><sg>$
^minulle/minä<prn><pers><sg><all>$
^nimensä/nimi<n><pl><nom><pxsp3>/nimi<n><sg><gen><pxsp3>/nimi<n><sg><nom><pxsp3>$
^kiinalaisin/kiinalainen<adj><pos><pl><ins>/kiinalainen<adj><v→n><sup><sg><nom>/kiinalainen<n><pl><ins>$
^kirjaimin/kirjain<n><pl><ins>$^./.<sent>$

6 / 41

Step-by-step
lexical

transfer

morph.

analyser

morph.

disambig.

morph.

generator

post-

generator

SL

text

TL

text

deformatter

reformatter

structural

transfer

lexical

selection

Morphological disambiguation

$ echo "Tiilitalojen keskellä hän kirjoitti minulle nimensä kiinalaisin kirjaimin." | apertium -d
. fin-eng-tagger
^Tiilitalo<n><pl><gen>$ ^keskellä<post>$ ^hän<prn><pers><sg><nom>$
^kirjoittaa<vblex><actv><past><p3><sg>$ ^minä<prn><pers><sg><all>$ ^nimi<n><sg><gen><pxsp3>$
^kiinalainen<adj><pos><pl><ins>$ ^kirjain<n><pl><ins>$^.<sent>$

6 / 41

Step-by-step
lexical

transfer

morph.

analyser

morph.

disambig.

morph.

generator

post-

generator

SL

text

TL

text

deformatter

reformatter

structural

transfer

lexical

selection

Lexical transfer

$ echo "Tiilitalojen keskellä hän kirjoitti minulle nimensä kiinalaisin kirjaimin." | apertium -d
. fin-eng-biltrans
^Tiilitalo<n><pl><gen>/Brick house<n><pl><gen>$ ^keskellä<post>/in between<pr>$
^hän<prn><pers><sg><nom>/she<prn><pers><f><sg><nom>/they<prn><pers><mf><pl><nom>/

he<prn><pers><m><sg><nom>$ ^kirjoittaa<vblex><actv><past><p3><sg>/author<vblex><actv><past><p3><sg>/
cut<vblex><actv><past><p3><sg>/write<vblex><actv><past><p3><sg>/type<vblex><actv><past><p3><sg>/
draft<vblex><actv><past><p3><sg>/spell<vblex><actv><past><p3><sg>/...$

^minä<prn><pers><sg><all>/I<prn><pers><mf><sg><all>$
^nimi<n><sg><gen><pxsp3>/name<n><sg><gen><pxsp3>/title<n><sg><gen><pxsp3>/header<n><sg><gen><pxsp3>$
^kiinalainen<adj><pos><pl><ins>/Chinese<adj><pos><pl><ins>$
^kirjain<n><pl><ins>/letter<n><pl><ins>/character<n><pl><ins>$^.<sent>/.<sent>$

6 / 41

Step-by-step
lexical

transfer

morph.

analyser

morph.

disambig.

morph.

generator

post-

generator

SL

text

TL

text

deformatter

reformatter

structural

transfer

lexical

selection

Lexical selection

$ echo "Tiilitalojen keskellä hän kirjoitti minulle nimensä kiinalaisin kirjaimin." | apertium -d
. fin-eng-lextor
^Tiilitalo<n><pl><gen>/Brick house<n><pl><gen>$ ^keskellä<post>/in between<pr>$
^hän<prn><pers><sg><nom>/they<prn><pers><p3><mf><sg><nom>$
^kirjoittaa<vblex><actv><past><p3><sg>/write<vblex><actv><past><p3><sg>$
^minä<prn><pers><sg><all>/I<prn><pers><mf><sg><all>$
^nimi<n><sg><gen><pxsp3>/name<n><sg><gen><pxsp3>$
^kiinalainen<adj><pos><pl><ins>/Chinese<adj><pos><pl><ins>$
^kirjain<n><pl><ins>/character<n><pl><ins>$^.<sent>/.<sent>$

6 / 41

Step-by-step
lexical

transfer

morph.

analyser

morph.

disambig.

morph.

generator

post-

generator

SL

text

TL

text

deformatter

reformatter

structural

transfer

lexical

selection

Structural transfer

$ echo "Tiilitalojen keskellä hän kirjoitti minulle nimensä kiinalaisin kirjaimin." | apertium -d
. fin-eng-postchunk
^In between<pr>$ ^brick house<n><pl>$ ^they<prn><pers><p3><mf><sg>$ ^write<vblex><past>$
^to<pr>$ ^I<prn><pers><p1><mf><sg><acc>$ ^name<n><sg>$ ^with<pr>$ ^Chinese<adj>$
^character<n><pl>$^.<sent>$

6 / 41

Step-by-step
lexical

transfer

morph.

analyser

morph.

disambig.

morph.

generator

post-

generator

SL

text

TL

text

deformatter

reformatter

structural

transfer

lexical

selection

Morphological generation

$ echo "Tiilitalojen keskellä hän kirjoitti minulle nimensä kiinalaisin kirjaimin." | apertium -d
. fin-eng
In between brick houses they wrote to me name with Chinese characters.

6 / 41

Modularity

The pipeline architecture makes it straightforward to insert or
substitute modules:

▶ HFST:
▶ Replacement for lttoolbox
▶ Used for most “morphologically complex” languages

▶ VISL CG:
▶ Accompanies apertium-tagger
▶ Rule-based morphological disambiguation and

shallow-syntactic analysis

7 / 41

What kind of systems are developed?

Dissemination Assimilation

High precision Low precision
Gisting

Min→Min Min→MajMaj→Min
Closely-related languages Unrelated or distant languages
Real translation aids Reading aids

8 / 41

9 / 41

10 / 41

10 / 41

Effort

How much effort does it take to develop a system with Apertium ?
▶ 2 weeks minimum

▶ Fastest system made (Macedonian→English)
▶ After 3 months, success rate is around 50%

▶ Around half of the students that participate in the Google
Summer of Code are able to finish their systems in 12 weeks

▶ After 6 months, perhaps 75% success rate
▶ Students who don’t quite make it in the Google Summer of

Code can have their projects picked up and finished in about
three months more.

▶ After 1 year, …
▶ When asking for funding, this is probably the minimum

amount of time you’d put.

11 / 41

Success factors

Technical:
▶ How much data is freely available

▶ In terms of dictionaries, rule descriptions and corpora
▶ Stability and compatibility of tagsets (intermediate

representation)
Linguistic:

▶ Morphological complexity of the languages
▶ Genetic and structural similarity of the languages

Personal:
▶ Experience of the developer with the tools
▶ Staying power of the developer

▶ Do they have the staying power to check 100s of lexicon
entries/day for weeks on end ?

12 / 41

Language pairs

2005

spa

cat

glg

por

3
13 / 41

Language pairs

2006

spa

cat

fra

oci

eng

glg

por

6
13 / 41

Language pairs

2007

spa

cat

fra

oci

eng

glg

por

ron

7
13 / 41

Language pairs

2008

spa

cat

fra

oci

eng

glg

por

epo

ron

cym

eus

16
13 / 41

Language pairs

2009

spa

cat

fra

oci

eng

glg

por

epo

ron

swe

dan

cym

bre

nob

nno

eus

21
13 / 41

Language pairs

2010

spa

cat

fra

oci

eng

glg

por

epo

ast

arg

ron

swe

dan

isl

mkd

bulhbs

cym

bre

nob

nno

eus

27
13 / 41

Language pairs

2011

spa

cat

fra

oci

eng

glg

por

epo

ast

arg

ron

swe

dan

isl

mkd

bul

ita

hbs

cym

bre

nob

nno

eus

30
13 / 41

Language pairs

2012

spa

cat

fra

oci

eng

glg

por

epo

ast

arg

ron

swe

dan

isl

mkd

bul

afr

nld

ita

hbs

cym

bre

nob

nno

eus

31
13 / 41

Language pairs

2013

spa

cat

fra

oci

eng

glg

por

epo

ast

arg

ron

swe

dan

isl

mkd

bul

afr

nld

ind

msa
ita

mlt

ara

hbs

slv

cym

bre

sme

nob

nno

eus kaz

tat

38
13 / 41

Language pairs

2014

spa

cat

fra

oci

eng

glg

por

epo

ast

arg

ron

swe

dan

isl

mkd

bul

afr

nld

ind

msa
ita

mlt

ara

hbs

slv

cym

bre

sme

nob

nno

eus kaz

tat

urd

hin

40
13 / 41

Major users

▶ La Voz de Galicia
▶ La Generalitat de Catalunya
▶ Ofis Publik ar Brezhoneg
▶ WikiMedia
▶ Oslo School District ,

14 / 41

Online users

15 / 41

Online translation statistics

16 / 41

Outline
Introduction

Design
Development
Status

Teaching
Courses
Google Summer of Code
Google Code-in

Research
New language pairs
Applying unsupervised methods
Hybrid systems

Future work and challenges
Challenges
Plans
Collaboration

16 / 41

Courses organised

▶ Luxembourg, May 2011
▶ Shupashkar, January 2012
▶ Helsinki, May 2013

17 / 41

Luxembourg, May 2011

▶ 2-day course, funded by the European Commission DGT
▶ Held at the European Commission
▶ Organised for translators

▶ Produced an 80-page course book used in later courses

18 / 41

Luxembourg, May 2011

▶ 2-day course, funded by the European Commission DGT
▶ Held at the European Commission
▶ Organised for translators

▶ Produced an 80-page course book used in later courses
▶ Translators not ever so interested in making MT systems ,

18 / 41

Shupashkar, January 2012

▶ 5-day course, funded by Apertium
▶ Held in Shupashkar (Cheboksary), Chuvashia
▶ 8 modules, covering all aspects of the system
▶ 3 teachers
▶ 30 participants from Russia

▶ At least two participants have gone on to work on MT

19 / 41

Helsinki, May 2013

▶ Course organised at the Dept. Linguistics
▶ 3 ECTS credits!
▶ Around 20 students
▶ Uralicists and linguistics students

20 / 41

..

Google Summer of Code
What is the Google Summer of Code ?

▶ Offers stipends ($5,500, 12 weeks) for students
▶ Open-source projects propose 3-month project ideas
▶ Students apply for projects

Apertium in the Google Summer of Code:
▶ Participated: 2009, 2010, 2011, 2012, 2013, 2014
▶ Around 60 completed projects
▶ Projects can be:

▶ Language pairs
▶ Engine development
▶ Interfaces
▶ Research work

▶ Massive organisation effort

21 / 41

Important projects

2009: Norwegian Bokmål–Nynorsk
2010: HFST integration
2011: –

2012: Kazakh–Tatar
Apertium for Android

2013: Finite-state constraint grammar
2014: Assimilation evaluation toolkit

22 / 41

Outcomes

▶ Student retention rate: around 10%
▶ Over 10 released language pairs
▶ Approx. €5,000 / year for project funds!

▶ Sending students to conferences
▶ Organising workshops
▶ Funding limited non-research work

23 / 41

Google Code-in
What is the Google Code-in ?

▶ Competition organised for 13–17 year olds
▶ Organised as ‘tasks’

▶ One task should take experienced developer 2 hours
▶ Each task is worth one point

▶ Two kids from each organisation get fully-paid trip to SF
Apertium in the Google Code-in:

▶ Participated: 2011, 2012, 2013, 2014
▶ Thousands of completed tasks
▶ Tasks can be:

▶ Language pairs
▶ Engine development
▶ Interfaces
▶ Research work

▶ Massive organisational effort
24 / 41

Outcomes

▶ Afrikaans–Dutch language pair
▶ Support for compound words in lttoolbox
▶ Free tagged corpus of English WP articles (30,000 words)
▶ Python interface to Apertium
▶ New web site

25 / 41

Outcomes

▶ Afrikaans–Dutch language pair
▶ Support for compound words in lttoolbox
▶ Free tagged corpus of English WP articles (30,000 words)
▶ Python interface to Apertium
▶ New web site

25 / 41

Outcomes

25 / 41

Outcomes

25 / 41

Outline
Introduction

Design
Development
Status

Teaching
Courses
Google Summer of Code
Google Code-in

Research
New language pairs
Applying unsupervised methods
Hybrid systems

Future work and challenges
Challenges
Plans
Collaboration

25 / 41

New language pairs

Creating a new language pair involves:
▶ Describing the morphology as a finite-state transducer
▶ Writing a disambiguation grammar, or annotating a corpus
▶ Constructing a bilingual dictionary
▶ Developing a contrastive grammar of two languages

Many languages that Apertium works with have
▶ Limited grammatical descriptions
▶ Few or inexistent lexical resources

26 / 41

Unsupervised methods

« Learning statistical models from unlabelled data »

In Apertium:
▶ How to improve an existing MT system
▶ Remove a module from the pipeline and try and relearn it
▶ Applied to part-of-speech tagging and lexical selection

General method:
▶ Generate all possible outcomes
▶ Score the outcomes on a target-language model
▶ Use fractional counts as input into supervised algorithm

27 / 41

Unsupervised: Lexical selection
Monolingual corpus

Koivun syyt ovat yleensä suorat.
Se on sinun syytäsi.
Uniapnean syyt ja siihen vaikuttavat tekijät.
Ilmastonmuutoksen syyt ja seuraukset.
Onko tarkoitus tukkia puun syyt?
Petsi myös jättää puun syyt enemmän näkyviin.

28 / 41

Unsupervised: Lexical selection
Expand possible translations

Koivun syyt ovat yleensä suorat.
Birch grains are usually straight.
Birch reasons are usually straight.
Birch faults are usually straight.

Se on sinun syytäsi.
It is your grain.
It is your reason.
It is your fault.

Uniapnean syyt ja siihen vaikuttavat tekijät.
Sleep apnea reasons and factors contributing to it.
Sleep apnea grains and factors contributing to it.
Sleep apnea faults and factors contributing to it.

Ilmastonmuutoksen syyt ja seuraukset.
Global warming reasons and consequences.
Global warming grains and consequences.
Global warming faults and consequences.

Siinä pintaan maalataan puun syyt näkyviin.

There on surface is painted tree reasons become visible.
There on surface is painted tree grains become visible.
There on surface is painted tree faults become visible.
There on surface is painted wood reasons become visible.
There on surface is painted wood grains become visible.
There on surface is painted wood faults become visible.

Petsi myös jättää puun syyt enemmän näkyviin.

Stain also leaves tree reasons more visible.
Stain also leaves tree grains more visible.
Stain also leaves tree faults more visible.
Stain also leaves wood reasons more visible.
Stain also leaves wood grains more visible.
Stain also leaves wood faults more visible.

28 / 41

Unsupervised: Lexical selection
Score on language model and normalise

Koivun syyt ovat yleensä suorat.
Birch grains are usually straight. 0.20
Birch reasons are usually straight. 0.36
Birch faults are usually straight. 0.44

Se on sinun syytäsi.
It is your grain. 0.04
It is your reason. 0.12
It is your fault. 0.84

Uniapnean syyt ja siihen vaikuttavat tekijät.
Sleep apnea reasons and factors contributing to it. 0.55
Sleep apnea grains and factors contributing to it. 0.26
Sleep apnea faults and factors contributing to it. 0.19

Ilmastonmuutoksen syyt ja seuraukset.
Global warming reasons and consequences. 0.98
Global warming grains and consequences. 0.01
Global warming faults and consequences. 0.01

Siinä pintaan maalataan puun syyt näkyviin.

There on surface is painted tree reasons become visible. 0.01
There on surface is painted tree grains become visible. 0.01
There on surface is painted tree faults become visible. 0.01
There on surface is painted wood reasons become visible. 0.03
There on surface is painted wood grains become visible. 0.92
There on surface is painted wood faults become visible. 0.02

Petsi myös jättää puun syyt enemmän näkyviin.

Stain also leaves tree reasons more visible. 0.01
Stain also leaves tree grains more visible. 0.01
Stain also leaves tree faults more visible. 0.32
Stain also leaves wood reasons more visible. 0.01
Stain also leaves wood grains more visible. 0.06
Stain also leaves wood faults more visible. 0.59

28 / 41

Unsupervised: Lexical selection
Extract n-grams and count

n-gram ‘reason’ ‘grain’ ‘fault’
syyt 2.07 1.51 2.42

koivun syyt 0.36 0.20 0.44
syyt ovat 0.36 0.20 0.44

sinun syytäsi 0.12 0.04 0.84
uniapnean syyt 0.55 0.26 0.19

syyt ja 1.53 0.27 0.20
ilmastonmuutoksen syyt 0.98 0.01 0.01

puun syyt 0.06 1.00 0.94
syyt näkyviin 0.04 0.93 0.03

syyt enemmän 0.02 0.07 0.91

28 / 41

Unsupervised: Lexical selection

What then ?
▶ Take counts and feed into ML-algorithm of choice

▶ For example MaxEnt, as in my thesis
▶ Get the same quality as TL-model, using only SL-information
▶ No need to make multiple translations at runtime!
▶ Learn translation probabilities without a parallel corpus!

28 / 41

Hybrid systems

Using rule-based systems inside SMT:
▶ Many approaches:

▶ Synthetic data (either wordforms or phrases)
▶ Incorporating linguistic information (morphology or syntax)

▶ A system with data from Apertium came second in WMT
Using statistics in rule-based systems:

▶ Most rule-based systems already have statistics to some extent

29 / 41

Outline
Introduction

Design
Development
Status

Teaching
Courses
Google Summer of Code
Google Code-in

Research
New language pairs
Applying unsupervised methods
Hybrid systems

Future work and challenges
Challenges
Plans
Collaboration

29 / 41

Major challenges

▶ Coverage
▶ Finding and motivating users

30 / 41

Coverage

Given adequate (> 95%) coverage, we are competitive with Google
translate:

▶ Evaluations of Slovenian→Serbo-Croatian, Afrikaans→Dutch,
Swedish→Danish, Danish→Norwegian, Maltese→Arabic have
shown this

However, most pairs are prototypes:
▶ Coverage around 80%–85%
▶ Increasing lexical coverage beyond this is pretty boring
▶ Difficult to motivate people

31 / 41

Finding users

Challenge:
▶ Apertium often finds itself translating in ‘non-canonical’

translation directions
▶ People are fond of translating from English (or French)

Successes:
▶ Spanish–Portuguese (Prompsit + AutoDesk)
▶ Romance languages in general

“to do”:
▶ Turkic languages
▶ Slavic languages
▶ Uralic languages

32 / 41

Factoring out language independent resources

▶ Apertium began with three language pairs, now has thirty
▶ Most language pairs developed by copying previous data
▶ Result → 13 copies of Spanish morphological dictionary

▶ This year we started to separate out monolingual data
▶ Now many languages have their own language directory
▶ Pairs then depend on a single monolingual source

33 / 41

Factoring out language independent resources

▶ Minor tagset differences that were introduced
▶ Classification differences
▶ “Multiwords”

Pair Example
spa-cat el<det><def><f><sg> mismo<adj><f><sg> casa<n><f><sg>
spa-eng el mismo<det><ind><f><sg> casa<n><f><sg>

▶ Problem #1: Generation errors
▶ Problem #2: Solving these errors will not solve any problems

33 / 41

Tree-based transfer

Languages with radically different word order could benefit from:
▶ Long distance reordering and agreement
▶ “recursive” transfer rules

Current prototype inspired by METAL and MorphoLogic:
▶ Bison (CFG) based transformer
▶ Build target-language tree as you parse
▶ Pattern-Action, like current Apertium

Ssub → that SV { $2 $1 }

34 / 41

Tree-based transfer

Subordinate clauses in English→Kazakh

S

X

sent

.

.

Ssub

S1

SV

SP

SN1

SN

N

nom

Kazakhstan
Қазақстан

prep

to

V

pers_verb

go
бар

PRNS

subj_pron

you
сен

cnjsub

that

S1

SV

V

pers_verb

know
біл

PRNS

subj_pron

I
Мен

1

I know that you went to Kazakhstan.

S

X

sent

.

S1

SV

V

pers_verb

біл

PRNS

subj_pron

Мен

Ssub

cnjsubS1

SV

V

pers_verb

бар

SP

prepSN1

SN

N

nom

Қазақстан

PRNS

subj_pron

сен

1

Мен сіздің Қазақстанға барғаныңызды білемін.
Minä sinun Kazakstaniin menneen tiedän.

34 / 41

Weighted pipeline

Apertium includes probabilistic components in the pipeline:
▶ Part-of-speech tagger calculates tag probabilities
▶ Lexical-selection module allows for translation probabilities

However:
▶ No probabilistic information encoded in the lexicon
▶ Rules are not weighted

In general:
▶ We should be able to take into account weights at all stages
▶ We should never output something less probable
▶ But rules should always allow us to control the output

▶ And output should be predictable!

35 / 41

Lexicon graph

▶ There are 40 ‘released’ bilingual dictionaries in Apertium
▶ We have a program that ‘crosses’ two dictionaries, e.g.

▶ Spanish-French + Spanish-Occitan → French-Occitan

Questions:
▶ What happens with ambiguities ?
▶ Can all other dictionaries help ?

36 / 41

Lexicon graph

piim

milk

est-eng

maito

eng-fin

36 / 41

Lexicon graph

piim

milk

est-eng

maito

eng-fin

piim

milk

est-eng

maito

eng-fin

fin-est

36 / 41

Lexicon graph

piim

milk

est-eng

melk

est-nor

maito

eng-fin

eng-nor mjölk

eng-swe

swe-nor

mielki
sme-fin

sme-nob

36 / 41

Lexicon graph

piim

milk

est-eng

melk

est-nor

maito

eng-fin

eng-nor mjölk

eng-swe

fin-est

swe-nor

mielki
sme-fin

sme-nob

36 / 41

Lexicon graph

This is fairly novel, but similar work has been done before:
▶ Mausam, Soderland, S., Etzioni, O., Weld, D. S., Skinner, M.,

Bilmes J. (2009) “Compiling a Massive, Multilingual
Dictionary via Probabilistic Inference”.

▶ Wushouer, M., Lin, D., Ishida, T., Hirayama, K. (2014)
“Bilingual Dictionary Induction as an Optimization Problem”.

36 / 41

Constructions

▶ Some things don’t translate well if you translate word-by-word!

▶ The meaning is not so much in the “content” words, but in
the expression.

37 / 41

Constructions

▶ Some things don’t translate well if you translate word-by-word!

Ei oo kaikki muumit laaksossa

▶ The meaning is not so much in the “content” words, but in
the expression.

37 / 41

Constructions

▶ Some things don’t translate well if you translate word-by-word!

Ei oo kaikki muumit laaksossa
Not all Moomin’s are in the valley

▶ The meaning is not so much in the “content” words, but in
the expression.

37 / 41

Constructions

▶ Some things don’t translate well if you translate word-by-word!

Ei oo kaikki muumit laaksossa
Not all Moomin’s are in the valley

A few sandwiches short of a picnic

▶ The meaning is not so much in the “content” words, but in
the expression.

37 / 41

Constructions

▶ Some things don’t translate well if you translate word-by-word!

Ei oo kaikki muumit laaksossa
Not all Moomins are in the valley

A few sandwiches short of a picnic

Ei oo kaikki X:t Y:ssa → A few X short of a Y.
« A few Moomins short of a valley »

▶ The meaning is not so much in the “content” words, but in
the expression.

37 / 41

Software-engineering practices

With large software projects, following good engineering principles
is often a challenge

▶ When Apertium was only pair-based this was easier. Each pair
was an island.

▶ Now we have separated out monolingual data, changes in one
place can have knock-on effects in other places.

▶ We have no full test suite that developers can rely on.

38 / 41

Language pairs

More language pairs!
▶ Almost there

▶ Russian–Ukrainian
▶ Kazakh–Kyrgyz
▶ Kazakh–Karakalpak
▶ Tatar→Russian

▶ Funded: North Sámi→Inari Sámi

39 / 41

Collaboration

Developers working on rule-based systems should collaborate!

▶ Morphological descriptions
▶ Lemma lists categorised by morphological paradigm

▶ Dictionaries
▶ Bi-/ multi-lingual correspondences between lemma + POS

▶ Ideas
▶ Anything you can think of!

40 / 41

Giitu · Takk · Kiitos · Tack!

41 / 41

	Introduction
	Design
	Development
	Status

	Teaching
	Courses
	Google Summer of Code
	Google Code-in

	Research
	New language pairs
	Applying unsupervised methods
	Hybrid systems

	Future work and challenges
	Challenges
	Plans
	Collaboration

